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It is well known that cocoa and dark chocolate possess polyphenols as major constit-
uents whose dietary consumption has been associated to beneficial effects. In fact, 
cocoa and dark chocolate polyphenols exert antioxidant and anti-inflammatory activities 
switching on some important signaling pathways such as toll-like receptor 4/nuclear fac-
tor κB/signal transducer and activator of transcription. In particular, cocoa polyphenols 
induce release of nitric oxide (NO) through activation of endothelial NO synthase which, 
in turn, accounts for vasodilation and cardioprotective effects. In the light of the above 
described properties, a number of clinical trials based on the consumption of cocoa 
and dark chocolate have been conducted in healthy subjects as well as in different 
categories of patients, such as those affected by cardiovascular, neurological, intestinal, 
and metabolic pathologies. Even if data are not always concordant, modifications of bio-
markers of disease are frequently associated to improvement of clinical manifestations. 
Quite interestingly, following cocoa and dark chocolate ingestion, cocoa polyphenols 
also modulate intestinal microbiota, thus leading to the growth of bacteria that trigger a 
tolerogenic anti-inflammatory pathway in the host. Finally, many evidences encourage 
the consumption of cocoa and dark chocolate by aged people for the recovery of the 
neurovascular unit.

Keywords: anti-inflammatory activity, cocoa, dark chocolate, flavanols, nitric oxide, polyphenols, reactive oxygen 
species, transcription factors

iNTRODUCTiON

Polyphenols represent a class of natural products that are very spread in the plant kingdom. Mostly, 
fruits, vegetables, and cereals are considered as major sources of dietary polyphenols, which human 
beings assume with food. In this context, Mediterranean diet (MED) represents an healthy nutritional 
regimen based on the consumption of extra virgin olive oil, fruits, vegetables, cereals, legumes, nuts, 
and seeds plus moderate intake of red wine (1, 2). It has been reported that MED is highly protective 
against chronic low-grade inflammation, and, in the case of atherosclerosis, stabilizes atheromatous 
plaques (3). Another study has emphasized the important role played by resveratrol, a non-flavonoid 
compound contained in red wine, to induce formation of sirtuins (Sirt) which, in turn, exert potent 
anti-aging effects (4). The MOLI-sani project has documented that in a large prospective cohort 
study of 24,325 Italian people MED reduced levels of glucose, lipids, C reactive protein (CRP), blood 
pressure (BP), and 10-year cardiovascular risk (5). Quite interestingly, Morabito and associates (6) 
have demonstrated that polyphenols contained in fruit juices prevent the post-prandial metabolic 
stress in humans as well as inflammatory disease outcome.
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Taken together, all these are general consideration on dietary 
polyphenols effects and for more details on their chemical struc-
ture and functions, readers are referred to Ref. (7, 8).

With special reference to cocoa, polyphenols are constituents 
of the beans and their derivatives from the Theobroma cacao tree. 
Cocoa liquor is the paste derived from cocoa beans, the so-called 
nibs, and it is composed by non-fat cocoa solids and cocoa butter 
(9). Instead, cocoa powder is obtained by getting rid of some of 
the cocoa butter from the liquor. Finally, chocolate results from 
the combination of cocoa liquor with cocoa butter and sugar.

With regard to lipids, cocoa butter contains both monounsatu-
rated and saturated fatty acids (FAs) (10). Oleic acid is the major 
monounsaturated FA that is present in similar amounts to those 
contained in the olive oil (10). Conversely, palmitic and stearic 
acids represent the main saturated FAs. However, stearic acid has 
been found to be anti-atherogenic, also accounting for one-third 
of the lipids contained in cocoa butter (11).

Fibers are present in cocoa beans, and their consumption has 
been shown to improve the low density lipoprotein (LDL):high 
density lipoprotein (HDL) ratio (12), also reducing risk of type 
2 diabetes (13).

Among minerals, magnesium, copper, potassium, and iron 
are present in cocoa and chocolate in significant amounts (14). 
Magnesium, copper, and potassium exert a cardio protective role 
(15–17), while iron, mainly present in dark chocolate, contrib-
utes to the 25% of the U.S. recommended dietary allowance for 
middle-aged man, thus preventing anemia outcome (18).

Finally, with regard to polyphenol composition, catechins, 
anthocyanins, and proanthocyanidins are the most abundant 
class of compounds contained in cocoa powder (19). In particular, 
flavanols are presented as monomers, e.g., monomers (+)− and 
(−)− isomers of catechin and epicatechin (epi), and, in addition 
their derivatives are build-up of epi subunit polymers (proan-
thocyanidins) (19–21). Minor components are represented by 
phenolic acids, flavonols, and their glycoside, some stilbenes, 
simple phenol, and isocoumarin (22–24). Among anthocyanins, 
cyanidins-3-α-l-arabinoside and cyanidin-3-β-d-galactoside 
are the most represented compounds (18). (−)− epi accounts 
for the 35% of the total phenolic content, while (+)− catechin, 
(+)− epigallocatechin and gallocatechin are minor constituents. 
Procyanidins are present as dimers, trimers, and oligomers of 
flavan-3, 4-diols, linked by 4 → 8 or 4 → 6 bounds (20, 25, 26).

As far as bioavailability of cocoa is concerned, monomeric and 
polymeric flavanols are rapidly absorbed in the small intestine 
upon ingestion with a maximal plasma concentration after 2 h 
from intake (27). Elimination of flavanols is completed after 6 h 
from ingestion (28). However, absorption not only depends on 
flavanol chemistry but also on their structural isomerism and 
stereoisomerism (29). Also, the range of polymerization seems to 
determine their bioavailability (30). Once absorbed under form of 
monomers, flavanols are transformed into metabolites detectable 
in plasma and urine, such as (−)− epi as sulfate, glucuronides, or 
methyl conjugated forms (31, 32). On the other hand, polymers 
and monomers of unabsorbed flavanols undergo colonic micro-
biota catabolism, and valero lactones and valeric acids represent 
the so-called first-step microbiota-derived catabolites (33, 34). 
Instead, a number of phenolic acids constitute intermediate and 

last-step catabolites (33, 35–37). Of note, a part of unabsorbed 
flavanols is excreted into the feces (33, 38, 39). In this framework, 
it is worthwhile emphasizing that microbiota-derived metabolites 
of ingested polyphenols in view of their healthy effects are object 
of intensive investigation (40, 41). For instance, with special refer-
ence to consumers of cocoa polyphenols, a comparison between 
regular consumers of chocolate and low consumers has clearly 
shown a significant difference in terms of metabolite profiles (42).

This review will illustrate the major effects of cocoa and dark 
chocolate consumption in health and disease and possible cellular 
and molecular mechanisms of action involved also in relation to 
putative therapeutic implications.

eFFeCTS OF COCOA AND DARK 
CHOCOLATe ON THe CARDiOvASCULAR 
SYSTeM

The cardioprotective effects exerted by polyphenols have been 
published long ago (43, 44). Since then, a series of studies sup-
ported the protective effects of cocoa and chocolate intake on the 
cardiovascular system. First of all, there is robust evidence that 
consumption of flavanol-rich cocoa leads to beneficial effects in 
healthy individuals. A study has documented that vasodilation 
was the main effect observed as a consequence of nitric oxide 
(NO) release following cocoa ingestion (45). In this connec-
tion, improvement of endothelial function was higher in older 
(>50  years) than in younger (<50  years) healthy individuals, 
as assessed by flow-mediated dilation (FMD) measurement 
(46). In this context, ex vivo flavanol-induced relaxation of pre-
constricted rabbit aortic rings, as well as in vivo increase in FMD 
were abrogated by inhibition of NO synthase, thus supporting 
the role of NO in the amelioration of endothelial function (21).

In an acute study, the effects of dark chocolate and white 
chocolate were evaluated in healthy participants monitoring vari-
ations of FMD and BP (47). Actually, dark chocolate was more 
effective than white chocolate in lowering the above mentioned 
parameters. In the second phase of the study, sugar-free but 
not sugared cocoa consumption led to a significant reduction 
of both systolic and diastolic BP in comparison with placebo 
(48). In similar trials, the effects of consumption of solid dark 
chocolate on endothelial function of healthy individuals were 
determined (49). A significant increase in FMD was observed in 
high-flavonoid intakers of dark chocolate (46 g) when compared 
to low flavonoid intakers once a day for 2  weeks. Shiina et  al. 
(50) reported in healthy individuals an increase of coronary flow 
velocity reserve following consumption of 45 g of flavonoid-rich 
dark chocolate in comparison to flavonoid-free white chocolate. 
All these evidences are confirmed by studies conducted in Kuna 
islanders who commonly ingest higher amounts of cocoa than 
mainlanders (51, 52). In fact, in the former urinary flavanol 
metabolites were more elevated than in the latter, and this evi-
dence correlates with low rate of cardiovascular disease (CVD), 
diabetes, and cancer in islanders.

On the other hand, in subjects at risk for CVD, consumption 
of cocoa led to results of clinical value, such as increase in nitros-
ylated and nitrosated species and FMD (53). Same results were 
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FigURe 1 | Major effects of cocoa and dark chocolate on the cardiovascular 
system. In response to cocoa and dark chocolate ingestion, a cascade of 
events takes place based on the nitric oxide (NO) and cyclic guanosine 
monophosphate (cGMP)-induced vasodilation and prostacyclin-mediated 
anti-inflammatory effects. Other details are contained in the text.

3

Magrone et al. Cocoa and Clinical Application

Frontiers in Immunology | www.frontiersin.org June 2017 | Volume 8 | Article 677

obtained in smokers who consumed high flavanol cocoa bever-
ages for 7 days (54). FMD increase was maintained on each day 
after a washout of 1 week. Also in diabetics, chronic consumption 
of cocoa three times a day for 30 days, containing 321 mg of fla-
vanols, led to higher increase in FMD in comparison to the low-
flavanol cocoa group (55). Conflicting results have been obtained 
in patients with coronary artery disease (CAD). For instance, in a 
study involving 40 CAD patients who consumed a chocolate bar 
and cocoa beverage, containing 444 mg of flavanols for 6 weeks, 
no significant differences were seen in terms of endothelial func-
tion measurement and high-sensitivity CRP, oxidized LDL, lipids, 
glucose, and insulin determination in comparison to placebo-
treated patients (56). Conversely, in another research, 16 CAD 
patients were divided into 2 groups, one receiving high flavanol 
cocoa (375 mg) and another one consuming low flavanol cocoa 
(9 mg) 2 times a day for 30 days, randomly (57). More significant 
results were observed in the high flavanol group in comparison 
to the low flavanol group in terms of increase in both FMD and 
mobilization of circulating angiogenic cells and decrease in BP. 
Furthermore, other two studies have clearly demonstrated the 
effects of daily chocolate consumption on coronary circulation. 
In heart transplanted individuals, intake of 40 g of dark chocolate 
led to increase in coronary artery diameters and endothelium-
dependent coronary vasomotion 2 h after intake of flavonoid-rich 
dark chocolate with a significant decrease in platelet aggregation 
(58). Parallely, increase in serum epi was recorded.

With regard to the mechanisms of action of NO on endothe-
lium function, there is evidence that it causes arterial vasodilation 
in healthy subjects, while in individuals at risk for cardiac disease 
NO response is decreased while oxidative stress is increased  
(59–61). Furthermore, NO exerts anti-inflammatory activity 
in  situ by decreasing leukocyte recruitment and platelet aggre-
gation (62). In this framework, our own studies have clearly 
demonstrated that human healthy peripheral monocytes are 
great producers of NO when in vitro stimulated with red wine 
polyphenols (63). Then, in addition to endothelial cells, which 
are another source of NO, also monocytes contribute to the 
NO-mediated vasodilation and cardioprotection.

Taken together, these evidences clarify why polyphenols, 
even including those from cocoa and dark chocolate, are able 
to improve endothelial function in health and disease via NO 
release.

With regard to the mechanisms of NO release, all polyphe-
nols regardless of their sources are able to activate endothelial 
NO synthase (eNOS), thus leading to NO generation (64). The 
administration of pure (−)− epi seems to reproduce the effects 
of cocoa-induced synthesis of NO on human coronary artery 
endothelial cells through eNOS activation via phosphatidylin-
ositide 3-kinases/protein kinase B, also known as AKT/protein 
kinase A and Ca2+-calmodulin (CaM)/CaM K II pathway (64). 
Moreover, by inhibiting phospholipase C, evidence has been 
provided for the existence of a putative epi receptor on the cellular 
plasmalemma (64).

Once released, NO is able to activate the soluble guanylate 
cyclase in the smooth muscle cells and platelets with increase 
of cyclic guanosine monophosphate (cGMP) (65, 66). The 
subsequent inhibition of calcium flux and decrease of cytosolic 

calcium concentration give rise to smooth muscle cell relaxation 
and platelet aggregation inhibition (see also next paragraphs) 
(65, 66). Furthermore, cGMP is able to increase cyclic adenosine 
monophosphate (cAMP), which, in turn, activates prostacyclin 
(65–67). Quite interestingly, prostacyclin acts as a vasodilator in 
synergy with NO, thus contributing to protection from throm-
bosis. Furthermore, the anti-inflammatory and vasoprotective 
properties of prostacyclin are enhanced by its capacity to decrease 
plasma leukotrienes (68, 69).

Some of the major vasoprotective effects of cocoa and dark 
chocolate are illustrated in Figure 1.

Finally, NADPH oxidase seems to be another target of NO 
activity. In fact, cocoa polyphenols reduce levels of NADPH oxi-
dase, which generates O2

− that, in turn, scavenges NO. Therefore, 
its inhibition increases levels of NO (70, 71).

Another important target of polyphenol-rich cocoa is rep-
resented by platelets. First of all, platelets can per se release NO 
under influence of flavanols (72), thus contributing to vasodila-
tion. Cocoa-mediated inhibition of platelet aggregation has been 
shown to depend on the decrease of thromboxan (TX) A2 synthesis 
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and antagonism at TXA2 receptors (73–75). Furthermore, other 
possible mechanisms of action are represented by the inhibition 
of platelet–leukocyte interaction since cocoa flavanols are able to 
inhibit CD62P expression on activated platelets (76–78). Of note, 
CD62P binds P-selectin glycoprotein ligand-1 on leukocytes, 
thus mediating the platelet–leukocyte interaction.

A series of studies have demonstrated the cocoa’s platelet 
inhibitory effects in healthy individuals and in heart transplant 
patients (79–81) who had consumed cocoa or dark chocolate. 
Taking into account that platelet activation greatly contributes 
to the inflammation and thrombosis in the progression of CVD, 
their inhibition by polyphenol-rich diets, even including con-
sumption of cocoa and dark chocolate, is of clinical relevance.

The cocoa-mediated decrease of BP can be ascribed to several 
mechanisms. Increase in NO may explain the anti-hypertensive 
effects of cocoa (82). In addition, there is also evidence that 
flavanols and flavonol are able to in vitro inhibit angiotensin-con-
verting enzyme (ACE) activity (83, 84). ACE, in turn, acts on the 
renin–angiotensin system, cleaving angiotensin I into angioten-
sin II with release of vasopressin or aldosterone and anti-diuretic 
hormone and increase in sodium and water retention. ACE also 
inhibits bradykinin and kallidin, which act as vasodilators (85).

In terms of effects of cocoa on serum lipid profile, a number 
of studies have clearly demonstrated that consumption of cocoa 
leads to increase in HDL while lowering LDL (86, 87). The same 
holds true also in the case of ingestion of high-polyphenol choco-
late (88). Basically, same results were reported in individuals fed 
cocoa beverages containing only cocoa powder. Furthermore, a 
meta-analysis study confirmed the ability of cocoa to reduce LDL 
cholesterol and total cholesterol in subjects at high cardiovascular 
risk (89, 90). Also, inhibition of LDL oxidation is another effect of 
both cocoa and dark chocolate consumption (89–92). Conversely, 
other studies failed to demonstrate significant differences in 
serum lipids between consumers of high-flavonoid chocolate and 
consumers of low-flavonoid chocolate (49, 93). Similarly, in other 
three studies, no effects of cocoa beverages on serum lipids were 
observed (94, 95).

COCOA AND DARK CHOCOLATe 
eFFeCTS ON THe CeNTRAL NeRvOUS 
SYSTeM (CNS) AND BeHAviOR

The beneficial effects of polyphenols on the CNS have extensively 
been described in human and animal studies. The majority of 
research has been conducted with polyphenols derived from soy, 
berries, wine, tea, and curcuma and much less from cocoa and 
chocolate (96). Also, flavonoids extracted from Ginkgo biloba have 
been reported to retard memory loss, dementia, and Alzheimer’s 
disease (AD) progression. However, data are still controversial 
(97, 98). In a series of researches, the anti-inflammatory activ-
ity exerted by polyphenols on the CNS has been documented. 
Curcumin extracted from Curcuma longa root was able to reduce 
the production of tumor necrosis factor (TNF)-α, interleukin 
(IL)-6, and reactive oxygen species (ROS) from primary astro-
cytes in vitro stimulated with 1-methyl-4-phenylpiridinium ion 
(MPP+) (99). Moreover, curcumin increased levels of IL-10 

and glutathione. Curcumin also decreased levels of toll-like 
receptor (TLR)-4, as well as of NF-κB, interferon regulatory 
factor 3, MyD88, and TIR-domain-containing adapter-inducing 
interferon-β otherwise enhanced by MPP+ (100). Similarly, epi 
and resveratrol have been found to exert neuroprotective activity 
modulating TLR-4/NF-κB/signal transducer and activator of 
transcription (STAT) signaling pathways (100).

Others have reported that polyphenols can interact with 
some signaling pathways, such as mitogen-activated protein and 
phosphoinositide-3-kinase (PI3-kinase)/AKT, thus leading to 
gene expression and protein synthesis for long-term potentiation 
and long-term memory occurrence (101). Flavonoids modulate 
transcription factors via protein kinase inhibition (102), while 
inducing the expression of brain-derived neurotrophic factor 
(BDNF). This factor contributes to neurogenesis, synaptic 
growth, and neuron survival in certain learning and memory 
brain regions, such as the hippocampus and subventricular areas 
(103, 104). Another mechanism is based on the generation of NO 
that leads to vasodilation and increased cerebral blood flow and 
blood perfusion in the context of the CNS as well as of the periph-
eral nervous system (105, 106). Such an increased blood flow is 
able to supply oxygen and glucose to neurons, also getting rid 
of waste metabolites in the brain and sensory organs (107, 108) 
while stimulating angiogenesis in the hippocampus (109). The 
effects of cocoa flavanols on the brain are represented in Figure 2.

Different cocoa flavonoid effects on Parkinson’s disease (PD) 
have been reported. In PD, death of neurons in substantia nigra 
depends on the generation of 5-S-cysteinil-dihydrobenzothiazine 
ROS mediated-effects (110). Quite interestingly, neuronal 
damage mediated by 5-S-cys-DA is dramatically mitigated by 
quercetin, hesperetin, and caffeic acid, which are derivatives of 
catechin and epi (110). Neuroinflammation is another hallmark 
of PD pathogenesis (111). Microglia response plays the major role 
in the progression of neuronal degeneration and, consumption 
of cocoa flavonoids, e.g., quercetin, leads to anti-inflammatory 
effects (112). In particular, quercetin behaves as certain kinase 
inhibitors that exert anti-inflammatory effects on glial cells (112), 
likely preventing excitotoxic death in neurons (113). In relevance 
to the above cited anti-inflammatory effects, evidence has been 
provided that fermented grape marc (FGM) polyphenols have the 
capacity to reduce in vitro release of granzyme B from healthy 
peripheral human cytotoxic T cells, thus lowering their neuro-
toxic potential (114). By analogy, cocoa polyphenols may exert 
similar neuroprotective activity.

Alzheimer’s disease is characterized by an increased produc-
tion of amyloid (A)β oligomers, which activate microglia with 
release of inflammatory mediators and neuronal death (115). In 
an in vitro model of human AD, cocoa polyphenolic extracts have 
been shown to exert not only antioxidant effects but also to afford 
neuroprotection (116). This last effect has been attributed to the 
activation of BDNF survival pathway either on Aβ plaque-treated 
cells or on Aβ oligomer-treated cells, thus, ultimately, leading 
to reduction of neurite dystrophy. Resveratrol, a non-flavonoid 
component of polyphenols (117), exhibited neuroprotective 
effects in AD. In fact, it promoted non-amyloidogenic breakdown 
of the amyloid precursor proteins and removal of neurotoxic Aβ 
peptides. It is likely that also cocoa polyphenols may exhibit 
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FigURe 2 | Cocoa flavanol-mediated brain effects. Release of brain-derived neurotrophic factor (BDNF) with increased neurogenesis and neurosurvival (left panel) 
and nitric oxide (NO)-mediated increase of cerebral blood flow (right panel) are the major effects exerted by cocoa flavanols. Further details are illustrated in the text.

TABLe 1 | Beneficial effects of cocoa flavanols on the progression of Parkinson’s 
disease (PD) and Alzheimer’s disease (AD).

PD AD

Inhibition of 5-S-cysteinil-
dihydrobenzothiazine-mediated 
neuronal damage (110)

Activation of brain-derived neurotrophic factor 
on amyloid (A)β plaque-treated cells or on Aβ 
oligomer-treated cells (116)

Anti-inflammatory effect 
mediated by quercetin on glial 
cells, behaving as certain kinase 
inhibitors, thus preventing 
excitotoxic death in neurons 
(112, 113)

Activation of NAD(+)-dependent histone 
deacetylase enzymes known as sirtuins (118)

Reduction of hyperglycemia and 
cholinesterase activity in the hippocampus 
with improvement of cognitive functions (121)
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similar activities. Another protective mechanism mediated by 
cocoa polyphenols is the activation of NAD(+)-dependent his-
tone deacetylase enzymes, termed Sirt (118). In particular, in the 
course of AD, reduced levels of Sirt1 upregulate NF-κB, which, in 
turn, trigger inflammation and enhances Aβ toxicity (119, 120).

Another experimental study based on the administration of 
dark chocolate to a non-transgenic AD obese model showed a 
reduction of hyperglycemia and cholinesterase activity in the hip-
pocampal tissue homogenates and improvement of the cognitive 
performance (121).

Another neurotrophic effect of cocoa flavonoids is represented 
by their ability to increase cerebral blood flow in healthy young 
subjects, as assessed by functional magnetic resonance imaging 
(FMRI) (122). This effect was observed 3 h after cocoa consump-
tion. Furthermore, such an increased blood flow to gray matter 
has been shown to account for angiogenesis as well as growth of 
new hippocampal neurons involved in the memory processing 
(110). In this context, evidence has been provided that increase in 
blood flow in the middle cerebral artery may account for protec-
tive effects in the course of dementia and stroke (123).

The effects of cocoa flavonols on PD and AD progression are 
represented in Table 1.

With special reference to the influence on behavior, a series of 
studies have demonstrated that palatable chocolate consumption 
is able to improve mood in a more significant manner than that 
performed by a non-palatable chocolate (124, 125). Palatability 
seems to be related to the chocolate-mediated release of opioids, 
such as β-endorphins in the hypothalamus (126), thus producing 
an analgesic effect (127).

Also, cognitive function has been shown to be improved by 
cocoa beverages with reduction of mental fatigue (128). However, 
others did not find any significant change of cognitive tests in 
comparison to placebo group in healthy old subjects who con-
sumed cocoa-enriched beverages and dark chocolate (129).

Chocolate consumption seems to stimulate different brain 
areas, especially chemosensory areas, such as insula, prefrontal 

region, caudomedial and caudolateral orbitofrontal cortex (130). 
According to FMIR, a significant taste-related activation in 
the orbitofrontal and insular cortices was reported (131). Also, 
chocolate color modulates brain activity with significant reduc-
tion in theta activity. This implies reduced levels of attention and 
higher levels of distraction (132). Finally, the sight of chocolate 
generated more activation in chocolate cravers than non-cravers 
in the medial orbitofrontal cortex and ventral striatum (133).

eFFeCTS OF COCOA AND DARK 
CHOCOLATe ON iNTeSTiNAL 
iNFLAMMATiON

Over the past years, plant-derived polyphenols have been experi-
mented in in vitro and in vivo models of intestinal inflammation in 
view of their anti-inflammatory potential (134, 135). Interesting 
results have been obtained in  vitro treating Caco-2 cells with 
cocoa polyphenols (134). Such a treatment led to induction of 
prostaglandin E2 synthesis via cyclooxygenase (COX)-1 effect, 
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FigURe 3 | Mechanisms of action of cocoa flavanols on obesity 
development. Increased expression of peroxisome proliferator-activated 
receptor (PPAR)-γ and adiponectin leads to reduction of lipid deposition and 
insulin resistance. Other details are present in the text.
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which may be involved in the maintenance of mucosal integrity. 
On the other hand, the murine model of dextran sulfate sodium 
(DSS)-induced colitis has been used for investigating the effects of 
polyphenol administration. For instance, administration of cocoa 
FGM-derived polyphenols to DSS-induced colitis mice led to a 
partial but significant abrogation of intestinal length reduction, 
while levels of TNF-α and IL-1β significantly dropped in inflamed 
colon homogenates in comparison to untreated colitis animals 
(136). Similar results have been documented by Pérez-Berezo and 
associates (137) in rats with DSS-induced colitis administered 
with a cocoa-enriched diet. Decrease of colonic cellular infiltrates 
was paralleled by reduction of serum TNF-α and colon induc-
ible (iNOS) activity. However, despite the reported changes, no 
clinical improvement was recorded in rats. In a murine model of 
DSS-induced colitis, Andújar and associates (138) reported that 
administration of cocoa polyphenols mitigated symptomatology 
accompanied by reduction of neutrophil infiltration, NO genera-
tion, expression of COX-2 and STAT-1 and STAT-3 (138) as well 
reduction of IL-1β, IL-6, and TNF-α from peritoneal macrophages 
(138). These modifications of biomarkers were associated to 
improvement of colitis. However, no inhibitory effect of NF-κB 
was detected in the nuclear extract of colon. Conversely, cocoa 
consumption by healthy volunteers led to a significant reduction 
of NF-κB in peripheral blood mononuclear cells (PBMCs), thus 
suggesting an inhibitory effect on the release of pro-inflammatory 
cytokines (139).

In the light of these results, addition of polyphenols to enteral 
nutrition in patients with inflammatory bowel disease may be 
beneficial in view of their ability to induce phase II antioxidant 
and detoxifying proteins, thus preventing or improving the 
inflammatory status (140).

eFFeCT OF COCOA AND DARK 
CHOCOLATe ON OBeSiTY

Evidence has been provided that cocoa administration to rats 
decreased visceral adipose tissue, thus changing the expression 
of genes, which are involved in the generation of enzymes and 
molecules for the occurrence of FA synthesis and thermogenesis 
in liver and white adipose tissue (141). In a study conducted in 
12 females, dark chocolate smelling was assessed for evaluating 
appetite response (142). This led to a satiation response, which 
inversely correlated with ghrelin levels. Since ghrelin is involved 
in adiposity induction (143), one can conclude that chocolate may 
reduce appetite, preventing weight gain. Furthermore, evidence 
has been provided that flavonoids act on peroxisome proliferator-
activated receptors (PPARs), thus behaving as agonists of PPAR-α 
and partial agonist of liver X receptor α (144–146). In addition, 
increased expression of PPAR-γ, which, in turn, increases 
expression of adiponectin and glucose transporter 4, is another 
mechanism elicited by cocoa flavonoid consumption (147). These 
events may lead to reduced lipogenesis, induction of lipolysis, and 
increase in adiponectin secretion. Adiponectin also reduces lipid 
deposition and insulin resistance, thus mitigating obesity.

These last mechanisms are depicted in Figure 3.
Another important function of cocoa flavanols related to 

obesity is the delay of LDL oxidation. For example, they decrease 

F2-isoprostane levels, which represent in  vivo markers of lipid 
peroxidation (148, 149). As result of LDL oxidation inhibition, 
decrease in atherosclerotic lesions in hypercolesterolemic rabbits 
treated with a diet enriched in cocoa powder for 24 weeks has 
been documented (150). Conversely, other researchers failed to 
confirm inhibition of LDL oxidation in rats treated with cocoa 
polyphenols for 2  weeks (151). In healthy human volunteers, 
evidence has been provided that cocoa consumption led to decrease 
of F2-isoprostane and thiobarbituric acid reactive substances, which 
are biomarkers of LDL oxidation and lipid peroxidation, respec-
tively (152–154). Quite interestingly, in healthy humans, cocoa 
consumption increased plasma HDL cholesterol (92, 155), while 
decreasing plasma triglycerides (156–158). These results sug-
gest the healthy benefits of cocoa consumption by changing the 
expression of genes involved in FA catabolism.

eFFeCT OF COCOA AND DARK 
CHOCOLATe ON THe iMMUNe SYSTeM

Several studies of our group have been conducted on the effects 
of red wine or FGM-derived polyphenols on the immune cells. In 
murine models of asthma, FGM-derived polyphenols were able 
to mitigate symptomatology (159) when orally administered. In 
human studies, both red wine and FGM-derived polyphenols 
were able to induce in vitro activation of T regulatory (Treg) cells 
and release of IL-10, which, in turn, mediates anti-inflammatory 
activity (160, 161). FGM-derived polyphenols were also able to 
reduce the respiratory burst of healthy neutrophils and mono-
cytes and abrogate basophil as well as rat mast cell degranulation 
in vitro (162, 163).
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FigURe 4 | The effects of coca-enriched diet on human microbiota. Cocoa 
diet modifies the intestinal microbiota, thus leading to a tolerogenic pathway 
with release of the anti-inflammatory cytokine interleukin (IL)-10. In the text, 
further details are illustrated.
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With special reference to cocoa flavanols, their in vivo adminis-
tration to experimental animals has clearly demonstrated changes 
in the lymphoid organs. In rats, a diet based on 10% cocoa led to 
thymocyte differentiation and upregulation of thymic antioxidant 
defenses (164). Same dietary regimen increased splenic B  cell 
percentage and decreased splenic T helper (h) cell frequency in 
rats (165, 166). In the gut of rats, changes in lymphomonocyte 
profile and Th cells frequency at Peyer’s patches and mesenteric 
lymph node levels were noted following cocoa administration 
(165, 166).

The in vitro effects of cocoa on cytokine secretion are quite 
controversial. Increase in TNF-α, IL-1β, IL-6, and IL-10 from 
human PBMCs stimulated with flavanol fractions of cocoa have 
been reported (167). Conversely, following cocoa stimulation 
reduced production of TNF-α, monocyte chemoattractant 
protein-1, and NO by endotoxin-stimulated macrophages has 
been documented (168). In the same set of experiments, it was 
reported that cocoa polyphenols were able to modulate endo-
toxin activation of granulocytes (168). With special reference to 
Th cells, a cocoa diet in rats increased IL-4 production (a Th2 
cytokine) from splenocytes (169). Secretion of interferon-γ from 
rat splenic Th1 cells was unmodified (166, 170), increased (171), 
or in vitro suppressed by cocoa extracts (172). Of note, cocoa diet 
did not modify rat IL-10 production (166, 173).

A series of experiments with procyanidin C1 using RAW 
264.7 macrophages have clarified some important aspects of 
cocoa-mediated immunomodulation. In this respect, pro-
cyanidin C1 significantly enhanced levels of iNOS-mediated 
NO generation by activated macrophages (174). In addition, it 
increased the expression of the costimulatory molecules CD80 
and CD86, thus potentiating antigen presentation to T cells (175). 
With regard to signaling pathways, procyanidin C1 was able to 
trigger phosphorylation of MAPKs, even including p38 and 
extracellular signal-regulated kinase as well as of nuclear factor 
of kappa light polypeptide gene enhancer in B-cells inhibitor-α 
with subsequent activation of NF-κB. These findings were con-
firmed by using specific inhibitors of NF-κB and MAPK, which 
hampered pro-inflammatory cytokine production in the same 
experimental model.

Transforming growth factor (TGF)-β1 is a pleiotropic 
cytokine involved in tissue repair and regeneration (176, 177). 
Therefore, the effects of cocoa flavanols on the production of 
this cytokine were also evaluated in human subjects (178). 
Results pointed out that in healthy subjects cocoa consumption 
was able to regulate TGF-β1 production with an increase in 
low producers and a decrease in high producers (178). Of note, 
low levels of TGF-β1 were detected in patients with advanced 
atherosclerosis (178), while its excessive production has been 
shown to lead to cardiac fibrosis (179). Therefore, cocoa 
consumption by individuals with cardiovascular risk leads to 
modulation of TGF-β1 production, thus leading to protective 
functions.

Cocoa flavanols have been shown to regulate secretion of IL-5. 
Smaller molecular weight flavanol fractions were able to in vitro 
enhance IL-5 release by healthy human PBMCs, while larger 
molecular weight flavanol fraction decreased its release (180). The 
cocoa-induced increase of IL-5 may be indicative of a switch of 

the humoral immune response toward secretory IgA production, 
thus reducing the risk for caries and periodontal disease (180).

Finally, the effects of cocoa polyphenols on the composi-
tion of intestinal microbiota need to be mentioned. According 
to studies of Tzounis and associates (181, 182), Spencer and 
associates (183), and Massot-Cladera and associates (184), 
flavanol monomers and dimers are absorbed in the small 
intestine, while procyanidins are metabolized in the colon by 
the intestinal microbiota into a variety of phenolic acids, which 
are also absorbed. All absorbed products are metabolized in the 
liver and eliminated in the urine, and, partly, in the feces. In a 
human trial conducted on healthy volunteers, consumption of 
a high-cocoa flavanol beverage for 4 weeks, containing 494 mg 
flavanols, significantly increased the growth of Lactobacillus 
spp. and Bifidobacterium spp. in comparison to a low cocoa 
flavanol drink (182). Usually, these bacteria are able to maintain 
an anti-inflammatory status in the bowel with activation of Treg 
cells and production of IL-10 (185), thus suggesting that cocoa 
polyphenols may behave as prebiotics and trigger a tolerogenic 
pathway in the gut.

The effects of cocoa on microbiota are illustrated in Figure 4.
At the end of this section, one should mention the effects 

of (−)− epi, (+)− catechin, and dimeric flavonols on NF-κB, a 
transcription factor involved in immune cell activation.

The abovementioned compounds are able to inhibit NF-κB 
activation, and, in particular the phorbol mirystate acetate 
(PMA) DNA binding activity, thus resulting in IL-2 produc-
tion decrease (185). Inhibition of binding activity is provoked 
by a blockade of the binding of active NF-κB to the DNA KB 
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motifs. Finally, pretreatment with flavanols leads to decrease of 
PMA-stimulated intracellular oxidants, which is an early event 
in NF-κB triggering.

CONCLUSiON

There is wealth of evidences concerning the relationship between 
health status and integrity of vascular and neurological func-
tions. As extensively described in the previous sections of this 
review, cocoa and dark chocolate-mediated induction of NO 
leads to vasodilation as well as inhibition of COX-2, CRP, and 
atherogenesis (186, 187). In addition, NO acts in concert with 
BDNF in order to modulate neural progenitor cell growth and 
synaptic metabolism for appropriateness of cognitive functions 
(188–190). Quite interestingly, release of NO at the thalamus 
level contributes to the adequate functioning of the neurovascu-
lar unit via increased blood flow and volume in the context of 
the brain (191, 192). Furthermore, polyphenols, even including 
those from cocoa, exert antioxidant effects, thus increasing 
neurological functions also preventing age-dependent damage 
(193). In synthesis, by analogy to other plant-derived polyphe-
nols, cocoa flavanols may exert beneficial effects via activation of 
eNOS, inhibition of the NADPH oxidase and ROS production, 
downregulation of NF-κB, and regulation of MAPK and cAMP 
response element-binding protein pathways (194–197). In aging, 
especially neurological functions become deteriorated, and NO 
and aging seem to be interconnected. For instance, alterations of 
NOS have been detected in aging brain, thus influencing memory 
(96, 198, 199).

Conclusively, in the light of the above considerations, cocoa 
and dark chocolate-based diet may be beneficial in aged people 
for improvement of the neuro–cardiovascular connectivity.
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